Bacteria and Bioplastics

Hello, everyone! It’s the second Saturday of the month, which means I am here with a science post. I’ve been taking a class about biotechnology (which actually ended this past week), so I’ve been finding various biotech things to give presentations about and so forth. Today’s topic, bacteria-produced bioplastics, was one of those biotech things.

What is bioplastic? I’m glad you asked! Bioplastics are biodegradable plastics which are being investigated to replace petroleum-based plastics, since they could reduce costs and environmental impacts of plastic use. A major type of bioplastic, which I’m going to focus on today, is the polyhydroxyalkoanates (PHAs for short). These are polyesters (a type of organic molecule) naturally produced in bacteria as reserves of carbon and energy. They can then be broken down when the bacterium needs the carbon or energy, which makes them truly biodegradable. (Fun fact: I read about a PhD student who got a certain bacterium to produce 80% of its weight in PHAs by using ice cream as a nutrient medium.)

Image result for alcaligenes eutrophus
Alcaligenes eutrophus, a PHA-producing bacterium.

PHAs have many and varied potential applications. They have been proposed as a packaging for foods like cheese, as biodegradable containers for things like drugs and fertilizers, as a material for disposable items like razors, cups, and shampoo bottles, and in the medical field, to be used as a material for things like sutures and bone replacements. Their properties are similar to those of currently used plastics like polypropylene, which could make the transition smoother if they were to go into use.

 

The difficulty, up until recently, has not been getting the bacteria to make PHAs, but getting the PHAs out of the bacteria. Last month, however, it was reported that a Spanish research team has developed and patented a method for genetically engineering a predatory bacterium, Bdellovibrio bacteriovorus, to break down the PHA producers, but not the PHAs. A number of companies are already interested in using this method commercially; it could be used for extracting valuable enzymes and other proteins as well as for bioplastic production. This method is much safer and less expensive than previous methods that used things like chemical detergents to extract PHAs. I think it’s a big step forward in making PHAs practical.

Image result for bdellovibrio bacteriovorus
Bdellovibrio bacteriovorus, the predatory bacterium

 

Here are my sources if you want to learn more: http://bioplasticsinfo.com/polyhydroxy-alkonates/applications-of-pha-as-bioplastic/

http://www.clt.astate.edu/dgilmore/Research%20students/phas.htm

https://www.sciencedaily.com/releases/2016/11/161130124150.htm

What do you think of this technology? Would you use a bioplastic? Have you ever heard of this before? Share in the comments!

Advertisements

2 thoughts on “Bacteria and Bioplastics

  1. This is super cool! I’ve theorized about a material like this to use in Subsapien, because everything they have is recyclable, because of the limited resources. It’s crazy when I find out things I make up are real. XD

    storitorigrace.blogspot.com

    Liked by 1 person

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s