Karpechenko, Polyploidy, and Other Long Words

Greetings, everyone! It’s the second Saturday of the month already, and I am delighted to be here talking about one of my favorite science topics with you. As you may know, or may have guessed from reading my blog and noting the disproportionate amount of genetics posts, I am a genetics major, major DNA nerd, and plant biology minor. I’m going to bring all those things together in this post, so hold on to your hat and let’s have some fun!

As with many of my science posts, our topic today stems from a class I am taking (Evolutionary Genetics of Plants, in this case). My teacher told us a story, which I thought was cool, so I am now going to repeat it to you.

Image result for karpechenko
The story was about this guy.

The guy in the picture above supplies the first of the long words in this post: his name, Georgii Dmitrievich Karpechenko. As you may have guessed, he was Russian. Specifically, he was a Russian botanist and plant cytologist (cell biologist) who did some interesting experiments with plant breeding. Let’s explore them.

Presumably, Karpechenko enjoyed both cabbages and radishes, or else he just wanted to contribute to improved agricultural productivity in his nation of limited farmland, or possibly both. Either way, he wanted to create a plant that produced a cabbage in the shoot and a radish in the root. The logical way to do this (his reasoning presumably went) was to cross a cabbage with a radish.

Here we have to back up a bit and get into some more long words. Cabbage and radish are different species, but not only that, they are in different genera (the first word of a scientific name); cabbage is Brassica oleracea and radish is Raphanus sativus. Usually, the definition of a species is “a population which is reproductively isolated (i.e. can’t breed) from others.” Of course, the only thing in science with no exceptions is that everything has an exception, and Karpechenko was indeed able to breed his cabbage and radish (for reasons we haven’t talked about in class yet) and produce a hybrid plant.

Well, unfortunately for Karpechenko, his hybrid didn’t look anything like either a cabbage or a radish. It was just a weed. Worse yet, it was a sterile weed; it produced seed pods, but no seeds. Fortunately for botany and genetics, though, Karpechenko didn’t give up on his experiments just yet. He kept observing his plants and noticed one day that a branch of one of them was producing seeds, even though the rest of this plant continued to be sterile. Furthermore, when he planted the seeds, they gave rise to fertile (if weedy) plants, and a new head-scratcher: how could this be?

Backing up again: The fertility of plants (or any organism, really) arises from a special cell division process called meiosis, which some may have learned about in high school biology. Most organisms are diploid, that is, they have two complete sets of chromosomes. For example, humans have 23 chromosomes in a set, and a total of 46 chromosomes in two sets. It works the same way for cabbage and radish; each has 9 chromosomes in a set, and 18 chromosomes total. This comes from reproductive biology; in any diploid organism, one of the sets of chromosomes comes from each parent. So in order to reproduce, plants (and animals, and fungi) have to produce haploid gametes, “sex cells” with only one set of chromosomes apiece. (In humans, we know them better as the sperm and the egg.) This is what meiosis is all about.

Image result for meiosis
A summary figure of meiosis. Note the homologous chromosomes separating into different cells; don’t worry about the different colors.


In order to reduce the chromosome set number, or “ploidy,” from diploid to haploid, chromosomes line up in matched (“homologous”) pairs and separate into two new cells (see the figure above). These cells then undergo further division to form gametes, the details of which we won’t worry about.

Now let’s think about Karpechenko’s sterile hybrid. This little weed had one set of chromosomes from cabbage and one set from radish, which enabled it to grow and function. However, when it came time for meiosis, it turned out that radish and cabbage chromosomes were different enough that they wouldn’t pair and divide into different cells, and no gametes were formed, which ultimately meant no seeds.

Image result for karpechenko cabbage radish
Karpechenko’s experiments shown as seed pods. “Amphidiploid” is the same thing as tetraploid.


So what about that branch that became fertile? Well, it turns out that plants sometimes spontaneously undergo whole-genome duplications, in which, just as it sounds like, the entire genome of the plant is duplicated in the cell. (This happens routinely before cell division, but then it all divides into two cells. In whole-genome duplication, what happens is that the cell thinks it’s divided, but actually hasn’t, and now has four sets of chromosomes rather than two.) This happened in Karpechenko’s plant, in a branch precursor cell, and gave rise to a tetraploid branch, having four sets of chromosomes, two from radish and two from cabbage. Now, suddenly, all chromosomes had homologs to pair with in meiosis, and seeds could form.

Karpechenko had discovered polyploidy, the state of having more than two chromosome sets, which turns out to be a rather important phenomenon in plants. Besides generating greater genetic diversity, helpful to plant breeders, polyploidy results in more DNA, bigger nuclei, bigger cells, and eventually, bigger, more robust plants overall. It’s so useful that plant breeders sometimes induce polyploidy with chemicals to help in developing new varieties. Many important plants, such as wheat and canola, are polyploids.

What happened to Karpechenko himself? Well, in the early 20th century, the Soviet Union’s leadership was not big on genetics. In 1941, Karpechenko was arrested on a false charge and executed, but not before making a major contribution to botany and genetics.

What do you think? Have you heard of Karpechenko before? What about polyploidy? (Isn’t it cool?) Do you have any questions? Tell me in the comments!


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s